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Summary

Most traditional approaches in neo-classical economics are not well suited to dealing with variations in output

produced by weather dependent generators and interdependencies between technologies. So far, the issues that

arise have been managed on a trial-and-error basis. It is likely, however, that without a better understanding of

the logic of the system policies towards zero emissions in electricity generation are building in the wrong models.

In this paper Macroeconomics Advisory attempts to provide the foundations for a more systematic approach.

It shows how variations in output affect the growth rates of different technologies along the low emissions

trajectory. In the case of Australia, it shows the opportunity cost of forcing a single trajectory pathway.

1 Introduction

Societies are trying to replace high emissions electricity generation technologies with low emissions alterna-

tives but the decisions this requires are difficult because of gaps in our understanding of the economics of this

process. One reason for this is that variations in output from weather dependent technologies create supply

side disruptions that affect the return to other technologies and the dynamics of the system. These processes

are not fully understood in terms of traditional models of supply and demand. The fact that fluctuations in

supply create interdependencies across technologies is well known and there is an extensive literature on their

effects. Most of this is based on analysis of market and output data, however, and this is tangential to the

theoretical interests of this paper. No attempt will be made to give a survey. See items [1] and [3]through [8]

for a small sample. In the real world, the issues created by variable outputs are mostly dealt with in pragmatic

terms with a mixture of markets and special purpose interventions without much analytical development. This

is often based on analogies with traditional approaches in economics. It may be, however, that this is starting

from the wrong model.
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The purpose of this paper is to fill some of this gap by modelling the effect of variations in supply on the

relative growth rates of different technologies as they displace high emissions alternatives. It concentrates on

weather dependent and continuous technologies. It asks two questions: [a] how do interdependencies between

technologies affect trajectories?; [b] how do trajectories change as the amount of weather dependent variation

changes?

This paper is a first attempt and makes a number of assumptions that are not necessarily consistent with

more familiar macro and micro theories. In the longer term it may be possible to get a more unified approach.

It must be stressed that the paper does not consider optimal trajectories. Some of this is done in [2] and

[6] for example. It gives the pathways that would be followed if growth in each technology followed a function

of instantaneous returns.

Among the main results are that, if the fraction of weather dependent technology is low, its relative rate of

growth will be fast. This will decrease as its fraction increases. If variations in output from weather dependent

technology are low an increase will increase its growth rate. If the variation in output is high, an increase will

decrease its growth rate. For sufficiently high levels of variation the growth rate of the weather dependent

technology can go to zero.

In some cases these results could be guessed. Others such as switching between positive and negative growth

rates as variation in output increases are a surprise.

2 The model

2.1. The system

Suppose a government has a programme to replace high emissions technology, like coal, oil or gas, with low

emissions alternatives. The growth rate of each low emissions technologies will depend on the returns for

each unit of investment. This might be understood as the planner’s choice variable or as an approximation

for investment decisions. The high emissions technology is labelled ξ. Two new technologies are considered.

These are labelled ̟ and α. The ̟ technology is solar and wind. This technology is weather dependent. Its

capacity is taken as its average output. It fluctuates above and below this to produce a surplus or deficit. The

α technology gives continuous output. It includes nuclear and fossil fuels with carbon capture and storage.

Total demand for consumption and storage is E. This is constant. The sum of replacement capacity grows

until all demand is met. At this point everything stops.
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The problem is to find the trajectories of the new technologies and their final shares when all high emissions

technologies have been replaced. If there were no interaction between the α and varpi technologies and costs

were the same any trajectory from the starting point to the surface E would be satisfactory. See fig. 1 for

examples.

The dynamics of the system can be represented by a set of differential equations if we are prepared to

accept that interpolating a lumpy system with continuous and almost everywhere differentiable functions is

a reasonable approximation. Let the capacity of the ̟ and α technologies at time t be w′(t) and a′(t). This

gives

ẇ′ := F (a′, w′)

and

ȧ′ := G(a′, w′)

where ẇ′ and ȧ′ are the rate of change in output capacity.

These equations must satisfy the following conditions:

[a]. F = 0 and G = 0 when E − w′ − a′ = 0.

[b]. F +G ≥ 0.

Condition [a] is obvious and [b] says that the old high emissions technology is not allowed to increase.

Figure 1. Example of possible trajectories without interdependencies
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Perhaps the simplest way to construct these equations is to assume that F can be decomposed into a

product of two expressions. The first is common to both technologies and is written g(E − a′ − w′) with the

property that g(0) = 0. The second depends on revenue. It is specific to each technology and determines

its growth rate. For the ̟ and α technologies respectively these expressions are written σ(a′, w′) and ψ(a′, w′).

It is now possible to write

ẇ′ = gσ (1)

ȧ′ = gψ (2)

for all t where it is defined. To save repetition the condition on the region of definition will be assumed.

In order to concentrate on the essential aspects of the problem it is assumed that prices are constant and

that the rate of growth of each technology is positively correlated with revenue per unit. This is a crude

approach but it has the advantage of mimicking investment trends over long periods of time and gives some

idea of how technologies interact in the absence of other variables. It also allows us to avoid dealing with the

fact that information is coarse and the long run dynamics are more responsive to average prices and costs

than shifts in short term marginal returns.

It is assumed that σ and ψ can be taken as continuous increasing functions of revenue. Brcause price is

fixed the primary influence on revenue is demand for output from fixed capacity.

Since the high emissions and the α technology produce a constant output it will sometimes be convenient to

consider them jointly. When this is done they are called thermal and written as γ where γ = ξ + α. Capacity

for γ is written x′.

Marginal costs differ for different technologies. For the γ technologies marginal costs are assumed to be

greater than zero. For the ̟ technology marginal cost is zero.

Variations in output from the ̟ technology produce a surplus s+ or a deficit s− where s+ =
∫
T
s(t)dt for

a period T with a similar expression for s−. This is a messy calculation. Fortunately it gives much more

precision than is required.

In order to simplify it is assumed that variation can be averaged and treated as a fraction of output. This

is written k. It is also assumed that time periods can be standardized and that output is surplus in the period
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(0, 1
2 ) and negative in the period ( 12 , 1). See fig 2.

It makes sense to think of k as an indicator of the way in which storage capacity introduces smoothing

into the system. If k is large smoothing capacity is small since fluctuations are not dampened. If k is small

fluctuations are dampened. For some sufficiently large K we have k → 0 as storage capacity → K.

It is possible for the α and ξ technologies to respond to a deficit by increasing their output by some fraction

of total capacity. Let this be q < 1. It seems reasonable to treat this as fixed by the technology.

It is assumed that fluctuations in demand for the continuous technology are shared equally across all units.

If, for example, the surplus requires a reduction in output of Q, the share for each unit of γ is Q
x′
.

2.2. Variation in output and revenue functions

The gains or losses from output variations are dealt with by starting with returns for full output and adjusting

up or down. Let R be total revenue. Set price as p = 1 and adjust for marginal revenues where required. For

the ̟ technology

R(̟) = w′ +
1

2
υ1(s

+) +
1

2
υ2(s

−)

where υi is a continuous function on its interval of definition. Consider, for example, the case where υ1 = υ2

and all surplus can be sold and all deficit covered by buying energy. Because s+ + s− = 0

R(̟) = w′

In the same manner

R(γ) = x′ +
1

2
(µ1(s

+) +
1

2
µ2(s

−)

where µi is a continuous function on its interval of definition. If variations were symmetrical, or did not affect

the γ technology

R(γ) = x′

From this we get the following cases.

[a]. The s+ equations.

The surplus will displace output from the γ technology when it can be sold at any price less than short term

marginal cost, written m. This means
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υ1(s
+) = mkw′ for kw′ ≤ x′ and mx′ for kw′ ≥ x′

µ1(s
+) = −(1−m)kw′ if kw′ ≤ x′ and − (1−m)x′ for kw′ ≥ x′

[b]. The s− equations.

The deficit after contribution from γ is a cost to ̟ of (1 + m̄). It is assumed that γ can sell at cost of

production (1 + m̄) but this leaves returns constant since price and costs cancel. Without loss of generality

we can set m̄ = 0. This means that

υ2(s
−) = 0 if kw′ < qx′ and qx′ − kw′ for kw′ ≥ qx′

µ2(s
−) = kw′ if kw′ < qx′ and qx′ for kw′ ≥ qx′

It is now possible to rewrite the revenue functions for intervals I1, I2 and I3 given by kw′ < qx′, qx′ ≤

kw′ ≤ x′ and kw′ > x′ as

R(̟) = w′ +
1

2
mkw′; w′ +

1

2
(−(1−m)kw′ + qx′) and w′ +

1

2
((m+ q)x′ − kw′)

R(γ) = x′ +
1

2
(−(1−m)kw′ + kw′); x′ +

1

2
(−(1−m1)kw

′ + qx′) and x′ +
1

2
(−(1−m)x′ + qx′)

Figure 2. Surplus and deficit

It is unit cost that matter in the dynamics and we also need to get a measure for E since it occurs implicitly

in x′ = E − w′.
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It is possible to sort out both issues by defining a new unit of output as wE := w′ where w can be thought of

as the fraction of total energy produced by̟ with a similar procedure for x′. Let r(̟) = R(̟)
Ew

and r(γ) = R(γ)
Ex

.

On the manifold with E = 1 in the (a,w) space where 1− w − a = 0 all the old technology is replaced.

To get from revenue equations to the dynamics of the system it is necessary to consider that investment

may cease at different lower bounds to revenue. If it is highly sensitive the lower bound might be high. If

insensitive it would be low. This is given by c.

From equations (1) and (2) we get ẇ′ = Eẇ and ȧ′ = Eȧ. It is possible to write σ and ψ in terms of ẇ′

E

and ȧ′

E
. Using the fact that x′ = E − w′ gives

ψ = c+
1

2
(mk(

w

1− w
)); c+

1

2
(−(1−m1)k(

w

1− w
)) + q) and c+

1

2
(−1 +m+ q) (3)

σ = c+
1

2
mk; 1 +

1

2
(−(1−m)k + q

(1− w)

w
) and c+

1

2
((m+ q)

(1− w)

w
− k) (4)

across the intervals I1, I2 and I3.

A consequence of this is that the dynamics of the system depend only on w. This is unexpected but easy

to understand because of the common characteristics of the γ technology.

In what follows trajectories will be treated as a function of w and the parameter value k. This shows how

the behaviour of the system changes for different levels of variability in weather dependent output.

It is assumed that q is fixed by the tchnology and is constant. It is obvious that q < 1 and it is also assumed

that it is small. This is necessary to preserve the structure of the problem. For q of magnitude close to 1

thermal generation would be back up technology and not of interest

A technical consideration is that the trajectory is not defined in (a,w) space for k = 0 since the technologies

would be independent. It will be noted, however, that equations (4) and (3) are well behaved and continuous

as k → 0 from the right and left.

For simplicity and without loss of generality set c = 1.

It is assumed m < 1 is small.
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3 Trajectories

3.1. Summary of trajectories

The main characteristic of trajectories are, roughly, that the ̟ technology grows rapidly when its share of

total generation is low and its rate of growth decreases as its share increases. This is consistent with most

observation. If k is small the share of in final output increases as k increases up to some point. After this

there is a switch and its share decreases as k increases. This is more of a surprise. It is also possible that at

some level of k its growth rate goes to zero. In this case the growth rate in the α technology goes to infinity.

These results are set out more precisely in what follows and fig. 3 gives examples.

3.2. Formal analyis

The relative rates of growth are analyzed in (a,w) phase space. Let ϕ = da
dw

. Then

ϕ =
ψ

σ

and this gives the integral equation

ϕ̄(w) =

∫ w

0

ϕ (5)

with a = ϕ̄(k,w) when k is treated as a variable.

Write the junction between intervals Ii|Ii+1. The integral is properly defined across these intervals because

ψ and σ−1 are continuous in w and k except at σ = 0. Continuity at junctions is guaranteed by q < 1.

Derivatives exist everywhere except across junction points.

Figure 3. Examples of trajectories. Paths are referred to by the values of k in ϕ̄ with k2 > 1 > k1 > k0 = 0
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Proposition 1 [a] The proportions in the energy mix for all k are w > a when w is small and the growth

rate for the α technology increases at an increasing rate;

[b] w increases in the stationary state given by the surface 1 − a − w = 0 as k increases for some k < u and

decreases for some k > u;

[c] there is a k > 1 : ϕ → ∞

Proof

[a]. The proof is immediate from ϕ < 1 in I1 and ϕw > 0.

[b] The proof is constructed by starting with k arbitrarily close to zero and showing that w on the stationary

state increases then decreases.

(i) k < 1. In this case w : I2|I3 is given by kw = 1 − w and w > 1
2 . This means that for w ≤ 1

2 it is only

necessary to consider w ∈ (I1, I2).

Consider k → 0. In this case k < q for some fixed q > 0 and w = I1|I2 → 1 and it is only necessary to consider

I1. For k → 0 we have w ≈ 1
2 in the stationary state and w − a = o where o → 0. Although ϕ is not defined

at k = 0 it is OK to take the derivative for k increasing. Leibnitz’s rule gives

ϕ̄k = ϕ(k, b(k))
db

dk
− ϕ(k, c(k))

dc

dk
+

∫ b(k)

c(k)

∂ϕ

∂k
dw

where w = c(k) and w = b(k) are initial and terminal conditions. If c(k) = 0 and b(k) is fixed at w = 1
2 the

only term to remaining is

∫ b(k)

c(k)

∂ϕ

∂k
dw =

∫ b(k)

0

m(2w − 1)

(1− w)σ2
dw

and since ϕ̄k < 0 a is decreasing as k increases along the surface w = 1
2 .

Evaluating this at k = 0 gives a shift down the surface E at w = 1
2 as ∆a. Using a linear approximation with

ϕ = 1 at w = 1
2 this shift is h(|∆a|) = sinθ|∆a| where θ = π

4 and so h = |∆a|√
2
.

By induction this continues for all k : w ∈ I1 at the stationary state. Since ϕ > 1 for w > 1
2 the angle θ

decreases as the stationary value of w increases and hence the increment w(k1)−w(k2) for w ∈ E is decreasing.

From the fact that ϕk has the same expression in I1 and I2 and ϕk.

As k increases w = I1|I2 will decrease and w ∈ I2 at the stationary state. Since ϕk has the same expression

in both states the same argument gives w increasing at a decreasing rate.

(ii). Consider k sufficiently large that w ∈ I3 for w < 1
2 . For w = 1

2

ϕ̄k =

∫ b(k)

0

∂ϕ

∂k
dw +

∫ 1

2

b(k)

∂ϕ

∂k
dw

where b(k) = I2|I3. In the first integral ϕk < 0 as before. In the second ϕk = −σkψ
σ2 > 0 with ϕkk > 0. As k

increases w = I2|I3 decreases. It follows that there must be some k sufficiently large that the absolute value
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of the first integral is less than the second and ϕ̄k > 0.

It follows from the continuity of ϕ that w in the stationary state switches direction. It increases as k increases

from k = ǫ and then decreases for some higher value of k

[c]. It is immediate from equation (4) that at I1|I2 the transition is at σ = 1− 1
2 (k(1− (m+ q)) and there is a

K sufficiently large that σ →) as k → K. Since the term f = 1−w
w

in (4) gived fw < 0 We have σ decreasing

in w. It follows that there are values for k < K where σ > 0 at w = y but σ → 0 as w increases for w ∈ S.

For some fixed k let σ → 0 for w → W . It is not possible for w > W . If so w is decreasing and σw > 0. This

means that the surface w = W is repelling.

�

There are two easy corollaries of this propostion.

Corollary: [d] For k sufficiently small w > a; [e] There is some k = K sufficiently large that a > w for all

k > K.

Proof: [d] is immediate and [e] follows immediately from part [c] and the continuity of ϕ.

3.3. Loss function

It is also interesting to calculte the amount of production lost. This is difficult along the pathways but

relatively easy in the stationary state. In this case the loss is

f1 =
1

2
((1−m)kw + (1− q(1− w))kw)

when the stationary pont is in I2 or I3 with kw > qa and

f2 =
1

2
(1−m)kw

if the stationary point is in I1.

In the case of f2 the results are obvious. Differentiating f1 gives

f1w > 0 and f1ww > 0

and the production lost accelerates as w increases.

In both cases the loss of production increases at a linear rate as k increases, as expected.
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4 A note weather dependent technologies: Australian application

The model needs to be interpreted for Australia in terms of the opportunity cost of employing the weather

dependent technology. It gives a qualitative anlysis of the difference between the amount of weather dependent

technology that would be installed to reach a specified share of total energy and the amount that would be

installed if the programme followed a trajectory that were determined by rates of change in relative costs. For

example, assume that the intention is to reach some fraction b < 1 of total energy. For the single technology

the path is along the horizontal w until the point b. For some given value of k the instantaneous revenue

growth path intercepts the surface b at w = d. The difference is b− d. See fig. 4.

Figure 4. Example of weather dependent technology only

Because the model is dimensionless b − d has no meaning as a number. It is possible, however to assign

meaning to relative distance. From the model this will depend on k and the value of b. For example, if only

a small b is required a renewables only policy may not have high opportunity costs. These might escalate

quickly for high values of b and k.

If k is interpreted as an indication of battery capacity with a small k indicating a large battery capacity, it

will be a significant element in the weather dependent technology model, although it will have the same role

in the formal analysis. It now has a role in offsetting opportunity cost losses.

5 Remarks

The paper provides a more complete picture of supply side variations and their effect on the dynamics of

energy systems than stanadard neo-classical theory. More specifically, it tries to answer questions [a] and [b]

at the beginning by exploring how variations in weather dependent output determine the trajectories in a

development programme based on relative returns. Some of the results were, more or less, in keeping with

intuitions such as fast initial growth of the weather dependent technology. It was probably more surprising to
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see that an increase in weather dependent variation initiall accelerated the relative growth of the ̟ technology

and later switched to impede it or reduce it to zero. It was also observed that weather dependent technology

impose a cost on the system as a whole.

The model is not intended to be realistic, but has a number of implications. Among these are:

(a) A fast initial relative rate of growth in weather dependent technology should not be taken as the basis for

predicting continued or accelerated growth;

(b) Responses to changes in technologies or storage capacity may be non-linear;

(c) Attempts to alter the trajectory of part of the system may have unintended consequences for the overall

dynamics.

(d) Interactions across the system need to be analyzed in a unified manner. It is a mistake to think of the

economics of energy replacement as an aggregate of the economics of single units.

Regarding (a) it was noted that as k increases the relative rate of growth of the weather dependent tech-

nology increases in the initial period. It was also noted that a very fast initial rate of growth may indicate a

more rapid slow down in later periods.

I am hesitant to fine tune the model by including batteries and other technologies as independent variables

and have left them subsumed into the parameter k. This is partly because information on technologies and

costs is uncertain. It is also because these additions may come at the expense of insight.
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